
 

EECS349 Final Project Report  6/4/2017 
 

Using a Convolutional Neural Network to Predict the 
Presence of Lung Cancer 

Adam Pollack, Chainatee Tanakulrungson, Nate Kaiser 
 
Abstract 
The use of machine learning to detect, predict, and classify disease has grown exponentially in the 
past few years, especially for complex tasks such as cancer detection and recognition. During this 
same time period, convolutional neural networks (CNNs) have exploded in popularity and capability, 
completely transforming the field of computer vision research. The purpose of this project was to use 
a CNN to detect cancerous lung nodules in slices of MRI scans and separate them from scans with 
only normal lung tissue. 
 
Introduction 
The objective of this project was to predict the presence of lung cancer given a 40×40 pixel image 
snippet extracted from a medical image database. This problem is unique and exciting in that it has 
impactful and direct implications for the future of healthcare, machine learning applications in personal 
data and decisions, and computer vision in general. The medical field is a likely place for machine 
learning to thrive, as medical regulations continue to allow increased sharing of anonymized data for 
the sake of better care. Not only that, but the field is still new enough that our project implements 
methods at the forefront of technology. 
 
Approach 
Due to the complex nature of our task, most machine learning algorithms are not well-posed for this 
project. There are currently two prominent approaches for machine learning image data: either extract 
features using conventional computer vision techniques and learn the feature sets, or apply 
convolution directly using a CNN. In the past few years, however, CNNs have far outpaced traditional 
computer vision methods for difficult, enigmatic tasks such as cancer detection. Due to time 
constraints, we used Google’s TensorFlow for a robust and efficient implementation of our CNN. 
 

 
Figure 1 - examples of cancerous samples images 

 

 
Figure 2 - examples of non-cancerous samples images 

 

 

EECS349: Machine Learning  1 

 



 

EECS349 Final Project Report  6/4/2017 
 

The images above demonstrate the difficulty of the task. These sample images were pulled from our 
input dataset. Preprocessing steps to extract these samples from the full 3D lung scans included 
locating all of the cancer nodules (given a CSV file of groundtruth nodule locations), extracting slices 
of these nodules for the positive samples, and generating the same number of negative samples by 
randomly selecting a valid x, y, z coordinate and verifying it was a sufficient distance from the nearest 
nodule. The full image set was then divided into train, validation, and test sets, and all image pixel 
values were converted to floating point values between 0 and 1, and zero-mean centered and 
normalized with respect to the training data. 
 
Tuning a neural network’s hyperparameters is a difficult task, even for experienced professionals. We 
elected to run a large-scale experiment across 5-dimensions for a total of 108  test permutations to 1

determine the best hyperparameters. The initial estimates and overall network architecture were 
based on proven models for similar applications, such as classifying the CIFAR-10 image set.  
 

Table 1: Hyperparameter Permutations 

Attribute Values Tested 

Kernel Size (1st convolutional layer) 3×3, 5×5, 7×7 

Kernel Size (2nd convolutional layer) 3×3, 5×5, 7×7 

Number of Filters (1st convolutional layer) 16, 32 

Number of Filters (2nd convolutional layer) 32, 64 

Dropout Rate 0.1, 0.2, 0.3 

 
Training and evaluating 108 models requires significant computational resources. To complete this 
project on time, we leveraged resources available through Northwestern’s EECS department. Namely, 
remote access to a Linux server with an NVIDIA GK110 Tesla K20 GPU and access to 19 more Linux 
machines with NVIDIA GeForce GTX 680s. Training on any one of these machines was ~10x faster 
than a high-end laptop, and training on all 20 allowed us to vary such a broad range of parameters 
while still finishing on time. 
 
After evaluating the results from the 108 models with varying hyperparameters, we chose the model 
that had the highest peak average validation accuracy. That is, the highest validation accuracy before 
validation accuracy started to decrease and loss started to increase. This model had kernel sizes of 
3x3 and 7x7 as well as 16 and 64 filters for the first and second convolutional layers respectively. It 
also had a dropout rate of 0.2. Using this model, we trained five different network architectures to 
determine the architecture that gave us the highest accuracy on our test dataset. 
 
 
 

1 108 = 3 × 3 × 2 × 2 × 3 total variables (3 for kernel size 1, 3 for kernel size 2, etc.) 

 

EECS349: Machine Learning  2 

 

https://www.cs.toronto.edu/~kriz/cifar.html


 

EECS349 Final Project Report  6/4/2017 
 

Table 2: Network Architectures 

Network Name Network Description 

Architecture 1 Conv1 -> Pool1 -> Conv2 -> Pool2 -> Dropout -> Dense 

Architecture 2 Conv1 -> Pool1 -> Dropout -> Dense 

Architecture 3 Conv1 -> Pool1 -> Conv2 -> Pool2 -> Conv3 -> Pool3 -> Dropout -> Dense 

Architecture 4 Conv1 -> Pool1 -> Conv2 -> Pool2 -> Conv3 -> Pool3 -> Conv4 -> Pool4 -> 
Dropout -> Dense 

Architecture 5 Conv1 -> Conv2 -> Pool1 -> Conv3 -> Pool2 -> Dropout -> Dense 

Architecture 6 Conv1 -> Conv2 -> Conv3 -> Pool1 -> Dropout -> Dense 

 
These various architectures were determined based on the principles described in the Stanford 
CS231n course notes[###]. All pooling layers had a 2x2 kernel and a stride of 2. The first convolutional 
layer had a 3x3 kernel and 16 filters, the second had a 5x5 kernel and 32 filters, the third had a 7x7 
kernel and 64 filters, and the fourth had a 7x7 kernel and 64 filters. All convolutional layers were 
followed by a rectified linear unit (ReLU) activation function. 
 
Each model was trained on 2,064 images (batch size of 104), validation was run every 10 epochs on 
another 442 images, and a final test was run after 500 epochs on another 442 images. After running 
the final six architectures, we found the inflection point of the loss to be around 250 epochs. We then 
ran the same setup on each of the six architectures for 250 epochs and recorded the final test 
accuracy. 
 
Results 
 
After training 108 hyper parameter configurations on our convolutional neural network and then 
training six different network architectures of one of the best configurations, our best solution 
(Architecture ##) attained a test accuracy of 96.38%. We ran further analysis to extract a confusion 
matrix and misclassified images of the final test results to determine why this number was not closer 
to 100%. 
 
Confusion matrix: 

 Predicted + Predicted - 

Actual + 226 12 

Actual - 4 200 

 

 

EECS349: Machine Learning  3 

 



 

EECS349 Final Project Report  6/4/2017 
 

 
Figure 3 - examples of misclassified test images 

 
Our model classified more examples as negative when they should have been positive than vice 
versa. We believe this is because of the nature of some of the positive examples. For example, the 
first four misclassified images above are all positive examples of cancer even though two of them 
have almost no distinct features. It is likely that it would be just as difficult for a human to classify 
those images as a doctor. We also can't guarantee that the data we used is completely correctly 
classified; it is possible there are some mislabeled images. 
 
 

 
 
 

 

EECS349: Machine Learning  4 

 


